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Abstract 

The accuracy of flood inundation maps is determined by the uncertainty propagated from all variables 

involved in the overall process including input data, model parameters and modeling approaches. This 

study investigates the uncertainty arising from key variables (discharge, topography, and Manning’s n) 

among model variables in the East Fork White River near Seymour, Indiana. Methodology of this 

study involves the first order approximation (FOA) method to estimate the propagated uncertainty 

rates and the generalized likelihood uncertainty estimation (GLUE) to quantify the uncertainty bounds. 

Uncertainty bounds in the GLUE procedure are evaluated by selecting a likelihood function, which is 

a statistic (F-statistic) based on the area of observed and simulated flood inundation map. The results 

from GLUE show that the uncertainty propagated from multiple variables produce an uncertainty 

bound of about 15% in the inundation area compared to observed inundation.  

Introduction and Objectives 

Quantifying the role of uncertainty is critical for the improvement of flood prediction capabilities. 

Uncertainty in flood inundation mapping arises from input data as well as modeling approaches 

including hydraulic modeling, hydrologic modeling, and terrain analysis. Although the variables 

contributing to uncertainties in flood inundation mapping are well documented by several studies 

(Romanowicz and Beven 1998; Pappenberger et al. 2005, 2006; Merwade et al., 2008), it is 

impossible to completely remove these uncertainties due to constraints imposed by time, cost, 

technology, and knowledge. Similarly, although the uncertain variables in flood inundation mapping 

are known, not all of them contribute equally to the final uncertainty in the flood inundation map for a 

given circumstance. Therefore, deciding the priority among the elements that cause uncertainty is the 

first step, and reducing the sources of uncertainty for the prioritized variables is the second step in 

reducing the overall uncertainty in flood inundation mapping.                                             
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The objectives of this study are to: (i) estimate the propagated uncertainty rates of key variables in 

flood inundation mapping by using the first order approximation (FOA) method; and (ii) quantify the 

uncertainty bounds arising from multiple variables using the generalized likelihood uncertainty 

estimate (GLUE). Monte Carlo (MC) simulations using HEC-RAS and triangle based interpolation 

are performed to investigate the uncertainty arising from discharge, topography, and Manning’s n in 

East Fork White River near Seymour, Indiana as a study site.  

Study Area and Data 

This study is performed along a 5 km reach 

(Seymour reach) of the East Fork of the White 

River near Seymour Indiana. The East Fork of the 

White River begins in Columbus, Indiana, and joins 

the West Fork of the White River before draining 

into the Wabash River. The region around the 

selected Seymour reach was affected by the July 2008 flood event. The Seymour reach is 

characterized by a relatively wide floodplain with U shaped cross-sections. The topography data for 

extracting cross-sections and flood inundation mapping is obtained from the digital elevation model 

(DEM) from the 2005 IndianaMap Color Orthophotography Project by Indiana University.  A total 

of nine cross-sections are extracted from the 1.5m horizontal resolution DEM. The average width of 

the Seymour reach cross-sections is 3.9km with an average spacing of 700m. The flow data used for 

hydraulic modeling of the Seymour reach include the observed discharge of 2729.7m
3
/s with a reach 

boundary condition of downstream normal depth. The land use for the Seymour reach main channel 

ranges from a Manning’s n value of 0.04 to 0.05. In the floodplains, the Manning’s n value ranges 

from a value of 0.04 to 0.12. 

Methods  

First order approximation (FOA) method 

First-order approximation (FOA) is a relatively simple technique for estimating the amount of 
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uncertainty, or scatter, of prediction by a deterministic model transferring from multiple variables in a 

functional relationship. The moment analysis of a function associated with independent random 

variables is the basis of FOA. The FOA approach to hydrologic problems was suggested by Benjamin 

and Cornell (1970), and the method has been applied to flood risk analysis (Johnson and Rinaldi 1998; 

Liu et al. 2001). The uncertainty (
yσ ) of model output (Y) is computed by knowing the uncertainty 

( xσ ) of independent variables (X) and the associated propagated uncertainty rate (dy/dx) as given in 

Eq. 1.  
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Generalized Likelihood Uncertainty Estimation (GLUE) 

The GLUE method involves forward MC simulations using different parameter values sampled from 

a feasible range. The objective of the GLUE method is to identify a set of ‘behavioral’ or acceptable 

models within the possible model/parameter combination (Beven and Binley, 1992). Outputs from  

all the simulations that are created by using the feasible parameter sets are weighted by a likelihood 

measure, which is a function that describes how well the simulated model matches the observed data. 

Generally, likelihood measures based on Bayes equation (Eq. 2) can be estimated by several 

likelihood functions, such as inverse of sum of squared error, inverse of sum of absolute error, and 

Nash-Sutcliffe efficiency.  

( )[ ]( )∑ <Θ=< zZIMLzZP |,)(
   

(2) 

where, P is posterior likelihood values and Z is the value of z simulated by model.  )],([ IML Θ  is 

likelihood measure by model prediction, M, for given parameter, Θ , and set of input data, I. Thus, a 

higher likelihood measure indicates better fit between the model output and the observed data, and 

vice versa.  A cutoff threshold for likelihood measure then classifies the simulated outputs as 

behavioral (acceptable) or non-behavioral. The likelihood measures of the behavioral models are then 

rescaled to obtain the cumulative density function (CDF) of the output prediction. The median of the 

rescaled CDF is generally taken as the deterministic model prediction (Blasone et al. 2008), and the 
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uncertainty bound corresponding to this prediction is quantified by the 90% confidence interval 

selected at 5% and 95% confidence levels.  

Methodology 

The methodology involves: (i) creating probability distribution for each variable (discharge, 

Manning’s n and topography); (ii) running Monte Carlo simulations using the HEC-RAS hydraulic 

model; and (iii) uncertainty analysis using GLUE and FOA. A brief description about each step is 

provided below.    

Probability distributions for discharge, Manning’s n and topography 

A uniform distribution is assumed for Manning’s n, and the values for Manning’s n are assigned based 

on four types of land use including cultivated land, tree, urban area and water. The range to define the 

uniform distribution for Manning’s n for each land use type is extracted from Chow (1959). For 

discharge data at the Seymour reach, a stage-discharge rating equation based on historic peak flows is 

developed through regression. By assuming a t-distribution for the stag-discharge raging curve, 

discharge values within the 95% confidence bounds of the observed flow of the 2008 flood event 

(2729.7 m
3
/s) in the regression equation are used to define the range of flow rate values. The DEM 

used in this study has a vertical accuracy of ± 69 cm, and therefore a uniform distribution is assumed 

for topography to generate random digital elevation models to extract cross-sections for HEC-RAS, 

and to map flood inundation. The range of values used for each random variable is presented in Table 

1. In the case of Manning’s n, a random number actually represents a percentage, and this percentage 

is applied to each Manning’s n within a cross-section. For example, if a cross-section has three 

Manning’s n of 0.03 (left bank), 0.02 (main channel), and 0.04 (right bank), a random number of -10 % 

will reduce these Manning’s n to 0.027, 0.018 and 0.036 to represent a change of -10%.  

Table 1. Random variables (RV) in Monte Carlo Simulations  

Initial 

(variables) 

Modeling Variables 

estimated by RV  
Min Max 

Probability 

Type 

No. of 

Chosen RV 

Ni Manning’s n N = Ni (1+RV) -0.375 0.375 Uniform 1 

Fi  Discharge F = RV
 
 [m

3
/s] 2257 3301 T-distribution 1 

Ei Topography E = Ei + RV [cm] - 69 69 Uniform 1 
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Monte Carlo (MC) Simulations  

After defining probability distribution for each uncertain variable (Manning’s, discharge and 

topography), random values are picked from these distributions to run HEC-RAS in MC simulations. 

A total of 1000 HEC-RAS simulations are conducted for each individual variable, and 5000 HEC-

RAS simulations are conducted by using a combination of all variables. All HEC-RAS simulations are 

conducted with steady state assumption.  

Estimation of the propagated uncertainty rate using the FOA method 

FOA method requires a mathematical equation that relates random variables with model output to 

define the rate of propagation uncertainty in Eq. 1. In this study, a regression equation is developed to 

define a mathematical relationship between each target random variable (Manning’s n, discharge and 

topography) and flood inundation area. The propagated uncertainty rate is estimated through 1000 MC 

simulations for each variable. The propagated uncertainty rate is computed by taking the ratio of flood 

inundation area to the change rate (%) of each target random variable. This ratio defines the dy/dx 

term in Eq.1.  

Quantification of uncertainty using GLUE 

After MC simulations, all outputs are evaluated by a likelihood measure to reflect how well the 

simulated model compares with the observed or baseline output. The selection of a likelihood measure 

is a subjective process, and the uncertainty bound obtained using GLUE is affected by the choice of 

the likelihood measure. In this study, F-statistic (Eq. 3) that includes the spatial aspects of a flood 

inundation map is used to estimate the likelihood measure for the uncertainty bound.  
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where Ao indicates the observed inundation area, Ap refers to the predicted flood inundation area, and 

Aop represents the intersection of both observed and predicted inundation areas. Uncertainty bound 

using GLUE is estimated based on the output of MC simulations.  
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Table 2. MC simulation results for Seymour Reach (Area in Km
2
) 

  Combination Manning’s n Topography Discharge 

Min 6.706 9.935 9.204 10.441 

Max 11.085 10.814 10.957 10.675 

Deviation 4.379 0.879 1.753 0.234 

 

   
Figure 2. FOA method for Seymour Reach. X axis shows the change of variables and Y axis indicates 

inundation area (km2). Solid line shows the plotted inundation area and the dotted line is a linear line 

by FOA method. 

Results 

Results from MC simulations for each variable including Manning’s n, topography and flow, and a 

combination of all variables are presented in Table 2. The simulated inundation area is in the range of 

6.70 km
2
 to 11.09 km

2
 for the combined parameters, and is 9.20 km

2
 to 10.96 km

2
 for each variable. 

The results of the FOA analysis show how much uncertainty from each variable is transferred to the 

flood inundation area (Fig. 2). Quantitatively, a 1% change in uncertainty of Manning’s n produces a 

corresponding change of 0.011 km
2
 in the flood inundation area. A 1% change in discharge produces a 

corresponding change of 0.009 km
2
 in the flood inundation area, and a 1cm change in topography 

produces a 0.012 km
2
 change in the flood inundation area.  

Results from GLUE analysis show the 

uncertainty bound in the flood inundation area 

from individual random variable as well as from 

the combination of all variables including 

Manning’s n, discharge and topography (Table 3 

and Fig. 3). The uncertainty bound for flood 

inundation area is in the range of 0.15 to 1.27 

km
2
 for individual variable, and is 1.61 km

2
 for  
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Figure 3. GLUE for Seymour Reach. X axis 

shows the inundation area and Y axis indicates 

CDF. 
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Table 3. Uncertainty Bounds from GLUE results 

  Combination Manning’s n Topography Discharge 

Lower 5% 9.356 10.273 9.662 10.501 

Upper 95% 10.969 10.801 10.936 10.654 

90% Bound 1.613 0.528 1.274 0.153 

 

    
a) min (hatched) and 

    obs (shaded) 

b) max and 

obs (shaded) 

c) 5% and 

obs (shaded) 

d) 95 % and 

       obs (shaded) 

Figure 4. Flood inundation maps for Seymour Reach. 

combined variables. Similar to MC simulations, combination of all variables produce the widest 

uncertainty bound (1.61 km
2
) followed by topography, Manning’s n and discharge. Considering the 

observed inundation area of 10.57 km
2
 for the Seymour reach, the uncertainty bound for inundation 

area ranges from 1.4 % to 15.3 % of the base inundation area. Flood inundation maps for the Seymour 

reach are shown in Fig. 4. 

Conclusions  

The following conclusions are drawn from this study: 

• This study presents an approach for quantifying the uncertainty and the propagation of 

uncertainty in flood inundation mapping using FOA and GLUE methods. FOA analysis using the 

2008 flood data on the Seymour reach shows that the propagation of uncertainty is highest for 

topography followed by Manning’s n and discharge.  

• The GLUE analysis also showed that topography emerged as the top uncertain variable for the 

Seymour Reach. This finding can be attributed to the accuracy of topography data in flood 

0 1 Kilometers 0 1 Kilometers 0 1 Kilometers 0 1 Kilometers
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inundation modeling and mapping. This conclusion is consistent with past studies that have 

found the accuracy of topography data to play a major role in flood inundation mapping. 

• The uncertainty bound from each variable does not add up to produce the combined uncertainty 

bound, thus demonstrating the non-linear nature of uncertainty propagation in the overall flood 

inundation mapping process.  

• The findings of this study are based on one single reach in Indiana. More studies using different 

topographic and flow conditions are needed to generalize the role of uncertainty and uncertainty 

propagation in flood inundation mapping. 
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